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The effect of creep and recovery on the Young's modulus of different aramid fibres was investigated by 
an acoustic method. Creep leads to the growth of the Young's modulus of up to 215 GPa. Some of the 
difference between moduli values obtained by the acoustic and mechanical methods can be traced to fibre 
viscoelastic deformation. The dependence of the reciprocal Young's modulus on the creep strain is described 
by a straight line, the slope of which is practically independent of stress and temperature. Creep and 
recovery may be described as a thermoactivated transition between two energy states that have different 
elasticities of the polymer chain. These states are supposed to be the straightened molecule and a molecular 
kink. 
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I N T R O D U C T I O N  

The Young's modulus is usually considered a constant 
parameter characteristic of the material. In elastic-plastic 
metals and isotropic polymers the inelastic component of 
deformation leads to some reduction of the stress-strain 
curve slope, i.e. to a decrease of the modulus compared 
to its initial value. On the contrary, in oriented polymer 
fibres Bessonov and Rudakov 1 have observed some 
increase in elasticity during loading. This effect was ob- 
served in aramid poly(amidobenzimidazole) (PABI)2--6, 
poly (phenylene terephthalamide) (PPTA)  4,6,7 and Du 
Pont Kevlar 49 (PPTA)  fibres 8-11 during loading 2'3 and 
creep 4'5. The methods used were mechanical testing ~°, 
an acoustic method 2''~-6'11, X-ray diffraction 3'8'9 and 
spectroscopic analysis 12"13. The increase in modulus 
found during loading was explained by the progressive 
improvement of crystalline orientation 2'3'8 and by the 
orientation of supramolecular 'pleated sheet' structure~ o. 

Apart from direct measurement of the Young's modulus 
by mechanical testing, the Young's modulus may be 
determined by measurement of acoustic wave velocity, 
Ed = p c 2  where p is the material density and c is the 
velocity of the acoustic wave. Measured by this method, 
the 'dynamic '  modulus is sometimes higher than the 
' tangent '  E t = Atr/Ae. In light of these two facts, the 
main objectives of the present work were to study the 
effect of the viscoelastic part of the deformation on the 
Young's modulus and to find the cause of the difference 
in modulus values measured by the acoustic and 
mechanical methods. 

EXPERIMENTAL 

The subjects of this investigation were 530 denier PABI 
yarns (trademark SVM14), 530 denier PPTA yarns 

* To whom correspondence should be addressed at: Department of 
Marcomolecular Science, Case Western Reserve University, Cleveland, 
Ohio 44106, USA 

(trademark TerlonX4), 930 denier Armos 14 and 200 
denier Kevlar 49 (PPTA)  yarns. 

The ends of the samples (single fibre or a yarn) were 
fixed in special conical-shaped moulds, which were filled 
with liquid epoxy resin EDT-10. After curing of the resin, 
the ends of the samples formed conic heads, which were 
used to load the fibres and to induce acoustic waves. The 
working length of the samples was 1 m. The specimens 
were loaded by the addition of weights. The acoustic 
wave velocity was determined by measuring the time 
taken by the leading edge of the acoustic pulse to reach 
the input strain-gauge transducer. The frequency of the 
acoustic wave was 50 kHz (in the range 3-200 kHz the 
dynamic Young's modulus Ed does not depend on the 
wave frequencyS). The pulse repetition frequency was 
100 Hz. Taking into account the fibre elongation under 
stress, the acoustic wave velocity was calculated from the 
equation c = (Lo + AL)/T, where Lo = 1 m, AL is fibre 
elongation and T is time taken by the pulse to pass 
through the sample. The decrease of the fibre density 
during its straining due to the Poisson effect was not 
taken into account. 

Water was removed from the fibres by specially 
dehumidified air at 110°C. The samples were preliminarily 
loaded before testing. After unloading, some straining 
that could not be annealed even after heating at 150°C 
for 40 h has remained (Figure 1). 

The value of the preliminary stress was limited 
according to the probability of fibre breakage. As a rule 
the prestress value was equal to 1500 MPa for PPTA 
and Kevlar 49, and to 2200 MPa for PABI and Armos 
yarns. In the case of PABI and Armos fibres some 
measurements have been taken at 2500 MPa stress. The 
temperature usually did not exceed 110°C. 

RESULTS 

All the aramid fibres under observation (PABI, PPTA, 
Armos and Kevlar 49) revealed creep. To study the effect 
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Figure 1 Dynamic modulus E d (a )  and stress a (b) of PABI yarn 
plotted against strain during preliminary loading: (1) drying; (2) 
loading; (3) creep under stress; (4) unloading; (5) recovery and 
annealing 

of creep on the Young's modulus, it was necessary to 
test fibres that have sufficiently high elongation during 
creep. As the creep rate is highest in PABI fibres, the 
experiments were mainly carried out using these fibres. 

Figure 1 shows the loading (2) and creep (3) lead to 
significant growth of the PABI fibres' Young's modulus, 
which reached 215 GPa. This value is very close to the 
theoretical limit 210-250 GPa 15'16. The effect of un- 
loading (4), recovery and annealing (5) is opposite. Fibre 
elongation (~  0.3% ) and increase of modulus (,-~ 8 GPa)  
during drying (1) also could be noted. 

In the first loading cycle the elongation is the sum of 
three parts: (1) elastic; (2) viscoelastic, which could be 
annealed; (3) inelastic, which could not be annealed (at 
150°C). According to Figure 1 after annealing the final 
modulus is higher than the initial one before loading. 
Consequently, irreversible strain leads to some modulus 
growth. In subsequent loading cycles the creep elongation 
could be completely annealed if the stress and tem- 
perature were not higher than at prestress. The modulus 
in this case is also reversible. Thus prestressing permits 
to avoid irreversible strain during subsequent loadings. 

Figure 2 shows that the effect of creep on the Young's 
modulus of a single PABI fibre and a yarn consisting of 
300 fibres is similar. However, there is some difference 
between the fibre and the yarn. The cause of this 

difference may be inaccuracy in the determination of the 
fibre diameter. Since testing of a single fibre is associated 
with some extra experimental difficulties (measurement 
of very low weights, friction in loading device, danger of 
fibre breakage owing to careless treatment, and the 
necessity of precise diameter measurement), yarns were 
mainly tested. 

To obtain a significant fibre strain at not very high 
stress, much time is needed. To shorten the measurement 
time, a special loading technique as shown in Figure 3 
was used. After observing creep at 2250 MPa stress, the 
weights were gradually removed. On varying the time of 
initial loading (at 2250 MPa),  different fibre lengths 
during unloading at each load were obtained. As a result, 
the correlation between viscoelastic strain increment and 
the Young's modulus were studied at several stresses. 

Figure 4 shows that dynamic modulus E d plotted 
against increment in viscoelastic strain does not depend 
on the way the sample was loaded. The results are 
ascribed by the same curve for creep, for recovery 
and for loading according to Figure 3. Hence, at fixed 
stress, fibre strain unambiguously determines its modulus 
and vice versa. As a consequence, the dependence of 
strain on stress and modulus, e(a, E), does not depend 
on the fibre history and the loading method. For this 
reason, below the loading method will not be noted. At 
high stresses (>1500MPa)  the results are mainly 
obtained for creep; at low stresses (<500 MPa)  for 
recovery ; and at intermediate stresses for loading accord- 
ing to Figure 3. 

DYNAMIC AND TANGENT MODULI  
CORRELATION 

Figure 5 shows modulus E plotted against the fibre strain, 
for three different loading methods. The loading 
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Figure 2 Increment of dynamic modulus, AEd, plotted against creep 
strain of PABI fibres: single fibre during loading (1) and creep (2); 
yarn consisting of 300 parallel fibres during loading (3) and creep (4) 
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Figure 3 PABI yarn stress a versus strain e: loading (1); creep (2); 
unloading after different periods of creep (3, 4) and immediately after 
loading (5). Arrows show the directions of loading, creep and recovery 
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Figure 4 PABI yarn dynamic modulus E d plotted against strain e: 
(O) creep ; ( • )  recovery ; ( ~ ) loading according to Figure 3 ; 
e = 0.45 GPa, T = 22°C 

methods were chosen so as to provide different creep 
rates at the moment  when a subsequent weight is added. 

In the first case, subsequent weights were added after 
every 10-15 s (which are needed for measurements of 
acoustic wave velocity). This method models the loading 
with constant elongation velocity. Values of tangent and 
dynamic moduli do not coincide and the difference 
increases with stress (curves 1 and 2). The dynamic 
modulus E d in this case monotonically increases with 
strain (curve 1) while E t has a maximum (curve 2). 

In the second loading method the weights were added 
after 10 rain. The creep rate in this case is very low at 
the moment  when a subsequent weight is added. Hence, 
viscoelastic elongation, after addition of the next weight, 
was much lower than in the first case. The dependence 
of the dynamic modulus practically coincides with that 
of the first loading method (curves 1 and 3). On the 

contrary, the dependence of the tangent modulus (curve 
4) is essentially different from that in the first technique. 
The difference between the dynamic and tangent moduli 
values in this loading method is much lower (curves 3 
and 4) than in the first case. Some of the difference 
between E t and g d values may be explained by creep 
recommencing after addition of subsequent weights. 

In the third case, the modulus was measured during 
unloading. The weights were removed at a constant rate 
(every 10-15 s). In this case the creep rate (especially at 
high stresses) was even lower than that with the second 
loading technique. At lower stresses recovery appeared. 
The dynamic modulus (curve 5) again coincides with 
that in the first two loading techniques. Thus the dynamic 
modulus practically does not depend on the loading 
method. At high stresses, when the creep rate during 
unloading could be neglected, the tangent modulus is 
found to be very close to the dynamic modulus (two 
points on curve 6). At lower stresses, recovery of the fibre 
length leads to a significant decrease of E t (curve 6). 
The behaviour of the tangent modulus confirms the 
supposition that the difference between E t and E d is due 
to the effect of creep on E t. 

Thus increase in creep rate does not influence the 
dynamic modulus and leads to a decrease in the tangent 
modulus. The cause is evident. As the frequency of the 
acoustic wave is very high (50 kHz)  the creep elongation 
for times ~ 1 0 - S s  could be neglected, and E d is 
determined completely by the polymer elasticity. On the 
contrary, values of the tangent modulus essentially 
change with the variation in the creep rate. To explain 
this effect, we note that the tangent modulus is deter- 
mined by total fibre elongation under stress, E t = 
A~/(Ae~ + Ae*), where Ae~ and Ae* are the increments 
of elastic and viscoelastic strain. If the creep rate is low 
and Ae* can be neglected, then E~ ~ - E  d. But if during 
creep or recovery Ae* cannot be neglected, E d :> g t. Thus, 
the difference between E d and E t is due to the creep. The 
higher the creep rate, the greater the difference. 

M O D U L U S - D E F O R M A T I O N  C O R R E L A T I O N  

The dependence of the dynamic modulus on strain 
increment during creep is not linear. F i g u r e  6 shows that 
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Figure 5 PABI yarn Young's modulus E plotted against strain e: 
(l, 3, 5) dynamic modulus; (2, 4, 6) tangent modulus; (1, 2) weights 
are added after every 10-15 s; (3, 4) weights are added after 10 min; 
(5, 6) unloading 
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Figure 6 Reciprocal dynamic modulus 1/E d of PABI yarn plotted 
against creep strain increment Ae*: (1, 2) recovery; (3-9) loading 
according to Figure 3; (10, 11 ) creep. Stress is equal 0 MPa (curve 1 ), 
224 (2), 448 (3), 672 (4), 896 (5), 1120 (6), 1344 (7), 1568 (8), 1792 
(9), 2016 (10) and 2240 MPa (11) 

where Eo = 115 GPa,  K is constant (0.12 GPa  -1)  and 
e is the total strain. 

The increase of Young's modulus under load is typical 
for all aramid fibres. In Kevlar 49, PPTA and Armos 
fibres, moduli values equal to 195, 190 and 205 GPa  
respectively have been registered. 

Figures 10 and 11 demonstrate that the dependence of 
reciprocal modulus on the creep strain is linear not only 
for PABI but also for PPTA, Armos and Kevlar 49 fibres. 
The test temperature was elevated with the aim of 
obtaining high enough fibre elongation during creep. For  
PPTA and Kevlar 49 fibres, the K values (0.30 and 0.32) 
are very close. This may be explained by similar chemical 
structure of the fibres. The K value of Armos fibres (0.35) 
is close to that for PPTA and Kevlar 49. 

M O D E L  

We failed to explain the linear 1/E d v e r s u s  As* correlation 
by the Takayanagi model 17 in accordance with which a 
polymer is a sequence of amorphous and crystalline 
regions with different Young's moduli, where the modulus 
of the amorphous regions is proportional to the part of 
loaded ( 'passing') molecules 18,19. This correlation may 
be explained only if it is supposed that:  (1) the polymer 
molecule is a chain of equivalen t fragments, which are 
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this dependence does become linear in the following 
coordinates: reciprocal modulus (1/Ed) versus creep 
strain increment (Ae*)6. Thus : 

1 /E  d = 1 /E  o -- K As* (1) 

where K is the slope of the straight line and E o is the 
initial modulus. 

Figure 7 shows that the slopes of straight lines K in 
Figure 6 do not depend on the creep stress. Figure 8 
shows that K increases slightly with temperature. 

Figure 9 shows 1 /E  d plotted against the total strain s 
(elastic plus viscoelastic) for different creep stresses. The 
experimental data are the same as in Figure 6. This 
dependence is described by several parallel straight lines 
corresponding to different stresses. These lines in a wide 
range of stresses (225-1350 MPa)  converge to a single 
straight line : 

1 /E  d = l I E  o -- K s  (2) 
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Figure 9 Reciprocal modulus 1/E a plotted against total strain s of 
PABI yarn. Stress is 0GPa (O) ,  0.25GPa (O) ,  0.90GPa (+) ,  
1.35 GPa ( V )  and 2.24 GPa ( x ) 
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Figure 10 Reciprocal modulus 1 / E  d of PPTA yarn plotted against 
increment of strain during creep: T = ll0°C; stress is 0.38 (1), 0.63 
(2) and 0.88 GPa (3) 

connected in series, and each fragment may be in one of 
two energy states with different rigidities (Fioure 12); (2) 
the molecular stress is invariable along its length; (3) 
interaction between molecules is very weak. 

Let us denote the stiffness of the fragments in these 
states as Ea and E 2 respectively (the stiffness of fragments 
may be described by 'soft '  and 'stiff' springs). It is natural 
to suppose that the 'stiff' state corresponds to straightened 
molecules in high-modulus crystalline regions and the 
'soft '  state is a defect of crystallite structures, which in 
oriented polymers is supposed to be a molecular kink 2°'21 
(Figure 12). The transition of some fragments from the 
low-modulus ( 'defect ' )  state to the high-modulus state 
under load leads to an increase in the chain length and 
increase in the rigidity. Recovery is the reverse transition, 
leading to a decrease in modulus. Creep in this model 
leads to some increase in the degree of crystallization of 
the polymer under stress. 

Creep and recovery may also be described as a 
reversible chemical reaction of the first order. If n 1 and 
/12 are parts of soft and stiff fragments, then : 

n 1 + /I 2 = 1 (3) 

The Young's modulus of springs connected in series 
(Figure 12) is given by: 

1/E = nx /e  , + nz/Ez (4) 

If dn 2 fragments pass from defect ( ' soft ' )  to main ( ' r igid')  
state, the chain elongation is: 

de* = X o dn2/D (5) 

where x o is the elongation of one fragment during this 
transition (Figure 12) and D is the fragment length. 
Taking into account equations (3) - (5) ,  an increase in 
modulus due to this transition may be written: 

1 1 ( E  2 - -  g 1 )D 
- A~* (6)  

E E o EaE2x o 

Equations (6) and (1) coincide if: 

K = ( E  2 - -  E~)D/EtEzxo 

Hence, this model explains the linear dependence of the 
reverse Young's modulus on creep elongation. 

CREEP RATE 

The rate of the chain transition from the defect energy 
state to the main one is given by: 

dnl /dt  = - k t n l  + k2n2 (7) 

where k 1 and k 2 are rate constants for creep and for 
recovery transitions, which may be defined from the 
Eyring equation 22 : 

kl = (~o e x p [ ( -  U + + Voa)/RT] 

k2 = ~ o  e x p [ ( - U -  - VoCr)/RT ] 

U + and U-  are activation energies for creep and 
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Figure  11 Reciprocal modulus 1/E d of Kevlar 49 (a)  and Armos (b)  
yarns plotted against increment of strain during creep: T = 100°C; 
creep stress is equal to 1.25 GPa  for Kevlar 49 and 1.42 GPa  for Armos 
fibres respectively 
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Figure 12 The model. Potential energy of polymer fragment: x 0 is 
the chain elongation during transition from the first to the second state, 
D is the mean fragment length, U 1 is the lower level of the activation 
energy of transition, AU is the width of the activation energy zone. On 
the right are shown : (3) a schematic representation of the straightened 
polymer chain (main energy state); (4) a pair of kinks; (5) a single 
kink equivalent to a shear defect of the chain; arrows show shear 
direction 
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Figure 13 Distribution of activation energies for the transition at 
different time ranges: (1) rectangular distribution at initial moment 
t = 0; (2, 3, 4) ' shor t ' ,  ' intermediate '  and ' long '  periods of creep time. 
Ux and U 2 are lower and upper levels of the zone 

recovery; co o is the fragment vibration frequency; v o is 
the activation volume; a is the tensile stress; and R is 
the gas constant. The solution of equation (7) is: 

k2 ( k2 )exp[-(kl-k2)t] (8) 
nl - kl - k~2 + nO ka --k2 
where n o is the part  of 'defect '  fragments at t = 0. 

This solution predicts the exponential decrease of creep 
rate with time. In fact, an exponential law of creep with 
time is not observed and usually Ae* ~ In t. At first sight, 
a logarithmic creep law contradicts the model of two 
energy states. 

It should be noted that, for any transition in solid-state 
bodies, a distribution in activation energies and the 
existence of energy zones are typical. So let us suppose 
that the activation energy of the transition is not constant 
for all fragments, and some distribution of activation 
energies exists. For  simplicity, a rectangular distribution 
of activation energies in the zone (Figure 13) will be 
considered. If the height and the length of the zone are 

Po (density of distribution) and AU, then n o = poAU. 
Supposing that the rate of the creep transition is much 
higher compared with the reverse transition (k~ >> k 2),  
equation (8) may be rewritten in the following way: 

p(U,  t) = Po e x p [ -  tCOo 1 e x p ( -  U / R T ) ]  

Consequently : 

dp (U,  t ) /d t  = -po(Oo e x p ( -  U / R T )  

x exp[- tCOo 1 exp( -- U / R T ) ]  

Integrating : 

d n t  fv12dp(U,t) dU 
dt , dt 

we have : 

dna AU eX ( ex , t 
dt t 

(9) 

where k 0 = 0 % l e x p ( - U 1 / R T ) ,  UI and U 2 are the 
bot tom and the upper levels of the zone, AU = U 1 - U2. 

Analysis of equation (9) shows that creep laws are 
essentially different in three time ranges. (1) At short 
periods of time (t << t~ = 1/ko) the transition rate is: 

dnl /d t  = - pokoRT [ 1 - e x p ( -  A U / R T ) ]  

Hence the creep rate is constant. (2) If tl << t << t 2 
(where t 2 = t 1 e x p ( A U / R T ) ) ,  then the transition rate is : 

dnx/dt  = - p o R T / t  

and elongation Ae* is proport ional  to log of time. It is 
worth mentioning that the creep rate in this time range 
does not depend on stress and is directly proportional 
to temperature. (3) If t >> t 2 then the rate of creep 
decreases exponentially. Thus the creep rate is constant 
in the first time range, decreases as 1/t in the second and 
decreases exponentially in the third. Note that in ' shor t '  
and ' long '  time ranges the creep rate is exponentially 
dependent on stress and temperature. On the contrary, 
in the intermediate time range when Ae*,~ In t, the 
dependence of creep rate on stress and temperature is 
not described by Boltzmann's exponent. 

Additional analysis shows that the log dependence of 
creep elongation on time in the second time range is quite 
insensitive to the zone shape in the initial moment  (i.e. 
to p distribution for t = 0). For  example, Ae* is 
proport ional  to t In t even if, for t = 0, p ,-~ (U - U~ )2. 
Thus because the supposition that the activation energy 
is described by the zone is very natural for solid-state 
bodies, the log creep law does not contradict the model. 

D I S C U S S I O N  

A kink is considered to be a molecular shear defect, 
analogous to a dislocation in crystalline materials (part 
5, Figure 12). The straightening of a kink requires a shift 
of a significant part  of the molecule with respect to the 
rest of the polymer. However,  this supposition is 
doubtful. Subsequently we suppose that the defect state 
is a pair of molecular kinks as shown in Fioure 12 (part 
4). In this case the transition from the defect to the main 
state is the annihilation of a pair of kinks, which does 
not require the movement  of a significant part  of the 
molecule. This transition may be the result of the 
movement  of kinks along the chain as well as the rotation 
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Figure 14 PABI (a) and Armos (b) fibre elongation during creep 
plotted against log time. PABI:  a = 100GPa,  T =  I10°C. Armos:  
T = 100°C, o = 1.42 GPa  

of some molecular group around two chemical bonds 
(part 4, Figure 12). 

The effect of concentration of dislocations (kinks in 
polymers) on the Young's modulus of crystals and 
oriented polymers is different. In crystals, variation of 
dislocation concentration leads to a comparatively low 
change of elasticity. The opposite is true in oriented 
polymers, where molecular defects essentially affect the 
Young's modulus. 

According to Figure 14 at high stresses and elevated 
temperature the dependence of Ae* on In t for PABI (a) 
and Armos (b) fibres declines from a straight line and 
can be described by S-like curves. In spite of this the 
l / E d versus Ae* correlation remains linear (Figure l lb ). 
Thus we can conclude that creep is associated with the 
same transition at ' short '  and ' long'  times despite 
different relaxation times. The insignificant dependence 
of K on stress and temperature also confirms this 
supposition. 

The possibility to consider only two energy states may 
be explained by the high degree of polymer orientation 
and the high part of straightened fragments. Because of 
this the polymer may be considered as a crystal with 
defects. Another consequence of high orientation is the 
respectively low difference between the fibre Young's 
modulus (130-215 GPa )  and its theoretical limit (210- 
250 GPa15'16 ). Of course, to describe creep of less 
oriented polymers with chains in the form of balls, more 
than two energy states may be needed. 

In this model the molecular stress is considered 
constant along its length. The foundation for this is the 
high anisotropy of fibre properties. The degree of 
anisotropy could be described by the ratio of the stress 
in the chain to intermolecular interaction, 7- For  aramid 
fibres shear and longitudinal strengths are equal to 
40-45 MPa 23 and ~ 4 . 0 G P a  respectively. Hence the 
ratio of longitudinal to transverse strengths is equal to 

100 and y is estimated as 100. As a result of the high 
anisotropy, the molecule end is not loaded in some 
zone 24'25, the length of which (so-called ineffective 
length) is denoted as L c. In this zone the molecule is 
gradually loaded from zero stress at the end to undisturbed 
stress, af, far from the end. In the shear lag approxi- 
mation 25, L c may be roughly evaluated as Lc ~ a7-~ 
100a, where a is the typical length of a chemical bond in 
a polymer chain (C-C or C-N).  Since the length of a 
C-C or C - N  bond is equal to approximately 2A,  
L¢ -~ 200 A. Thus, the molecule may be loaded only at 
a length L > 200 A. Analogously, far from the molecule 
end, stress could not be reduced significantly unless the 
length of the defect is not higher than L~. The shorter 
defects, for example kinks, are not able to change the 
molecular stress significantly. 

If the material is perfectly elastic and its modulus is 
constant, then strain and stress are not independent. The 
relation between stress and strain is described by Hooke's 
law. Analogously, if in a viscoelastic body the Young's 
modulus and the creep strain are related by equation ( 1 ), 
then stress, strain and the Young's modulus are not 
independent. Hence, the Young's modulus could be 
determined from the stress and strain during deformation 
if the constant K is known. 

The total strain in a non-elastic body is equal to the 
sum of elastic, viscoelastic (including the 'fast '  transitions 
with low activation energies) and irreversible com- 
ponents. Since the irreversible part of the deformation in 
our experiments was negligible, the total increase of the 
modulus under loading is a result of elastic and 
viscoelastic components : 

de = de c + de* (10) 

where de e and de* are the differentials of elastic and 
viscoelastic components of total strain. 

Hooke's law gives: 

da = E de e (11 ) 

An increase of modulus due to viscoelastic strain may be 
described by : 

de* = d ( a / E )  (12) 

Now we can consider deformation of PABI fibres in 
Figure 1. The initial stress, strain and modulus in Figure 1 
are equivalent to % = 0 . 8 % ,  a o = 0, E o = 130GPa.  
Parameter K is equal to 0.12 GPa  -1. If the final stress 
and strain are af = 2.15 GPa  and ef = 3.0% respectively, 
then by solving the system of equations ( 1 ) and ( 10)- (12) 
numerically, we obtain a final value for the modulus as 
approximately 160 GPa. This value differs significantly 
from the experimental value of 215 GPa.  If an increase 
in the Young's modulus were due solely to inelastic 
deformation, total fibre elongation would be significantly 
higher than ~t - eo = 2.2%. Hence we conclude that the 
observed increase in PABI fibre modulus could not be 
explained solely by the effect of viscoelastic strain, and 
there should be some other causes leading to an increase 
in the modulus. The second cause of the increase of the 
modulus is the effect of the elastic part of the deformation 
due to the non-parabolic shape of the energy curve 
(Figure 12) and the bending of fibrils 1°. The effect cannot 
result solely from the elastic or from the viscoelastic 
strains, but its nature is the combined effect of viscoelastic 
and elastic strains. Equations (11)-(13)  allow for 
estimation of the parts of these effects. The viscoelastic 
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part  of  the total strain leads to about  30% of the total 
increase in PABI  fibre modulus  (from 130 to 215 G P a ) ,  
and 70% of the effect is a result of  elastic strain. An 
analogous considerat ion shows that  in P P T A  and Kevlar  
49 fibres the creep results in about  30% and in Armos  
about  45% of the total modulus  growth.  

C O N C L U S I O N S  

Drying  of  fibre leads to its e longat ion and to some 
increase in the Young ' s  modulus.  The same is true for 
the effect of  fibre irreversible strain. 

Creep leads to an increase of Young ' s  modulus  of  
PABI ,  Kevlar  49, Terlon and Armos  fibres up to 215, 
195, 190 and 205 G P a  respectively ( 8 0 - 9 5 %  of the 
theoretical limit). 

Some of  the difference between modul i  values obtained 
by the acoustic and mechanical  methods  is due to fibre 
creep. If  the creep rate is slow, the difference between 
these values may  be neglected. 

The dependence of  the reciprocal Young ' s  modulus  on 
the creep strain may  be described as a straight line. The 
slope of this straight line does not  depend on the creep 
stress and temperature.  

Fibre creep and recovery m a y  be described as a 
thermoact ivated transit ion between two energy states. In  
these states the polymer  chain may  be described by a 
' sof t '  and a 's t i ff '  spring respectively. The ' so f t '  and 
' r ig id '  states are supposed to be the straightened molecule 
and a pair of  molecular  kinks, and the latter are 
analogous to a pair of dislocations in crystalline materials. 

If  the activation energy of the transit ion between these 
states has some distribution, i.e. it is described by an 
energy zone, the creep strain dependence on time is 
logarithmic. 
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